Day-ahead industrial load forecasting for electric RTG cranes
نویسندگان
چکیده
منابع مشابه
One-Day-Ahead Load Forecasting using nonlinear Kalman filtering algorithms
In this paper, we consider the problem of 24-hour ahead short-term load forecasting; the formulation is based on the nonlinear Kalman filtering. Our formulation takes into account weather conditions as well as previous trends. Effects of weather as well as prior consumptions are nonlinear functions; hence our choice. We compare our proposed method with the standard Kalman filtering approach and...
متن کاملOne Day Ahead Load Forecasting Using Recurrent Neural Network
This paper presents short term load forecasting (STLF) in Java Island using recurrent neural network (RNN). The simple one of RNN is Elman, it has one hidden layer and suitable used in time series prediction. It can learn an input-output mapping which is nonlinear. The Elman RNN was proposed for one day a head forecasting, with interval time 30 minutes. Training model divided into weekday, week...
متن کاملApplication of a New Hybrid Method for Day-Ahead Energy Price Forecasting in Iranian Electricity Market
Abstract- In a typical competitive electricity market, a large number of short-term and long-term contracts are set on basis of energy price by an Independent System Operator (ISO). Under such circumstances, accurate electricity price forecasting can play a significant role in improving the more reasonable bidding strategies adopted by the electricity market participants. So, they cannot only r...
متن کاملNCER Working Paper Series Forecasting day-ahead electricity load using a multiple equation time series approach
The quality of short-term electricity load forecasting is crucial to the operation and trading activities of market participants in an electricity market. In this paper, it is shown that a multiple equation time-series model, which is estimated by repeated application of ordinary least squares, has the potential to match or even outperform more complex nonlinear and nonparametric forecasting mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Modern Power Systems and Clean Energy
سال: 2018
ISSN: 2196-5625,2196-5420
DOI: 10.1007/s40565-018-0394-4